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Introduction

The X-34"9 is a reusable, sub-orbital test vehicle developed by Orbital Sciences Cor-
poration (OSC) as part of NASA’s Reusable Launch Vehicle (RIV) Technology program.”
Originally proposed as a partially reusable, two-stage vehicle designed to deliver 1500 b to
low Earth orbit, the X-34"s current purpose is to provide a testbed for RLV technologies and
to demonstrate RLV operations. These technologies include autonomous landing systems,
low-cost avionics. advanced thermal protection systems (TPS), and composite airframe and
propellant tanks. Relatively small in size, it is 58 ft long with a wing span of 28 ft and a gross
weight of approximately 45.000 Ib. One of the program’s goals is to develop a vehicle capable
of achieving Mach 8 flight and an altitude of 250,000 ft. Part of NASA Langley Research
Center’s role in the X-34 program is to assist OSC by performing both computational fluid
dynamic (CFD) analvsis on the vehicle as well as acrodynamic and aeroheating wind tunnel
testing. One of Langley’s tasks is to provide OSC with CEFD predictions of entry heating
rates to be used for the TPS design.

The design of a vehicle’s TPS involves two areas. First, the maximum surface temper-
ature along a trajectory defines which materials may be used for the TPS over different
regions of the vehicle. Conversely, once the TPS materials have been chosen. flight limits are
required to ensure the temperature limits of the materials are not violated for off-nominal
trajectories. CFD assists in this area with solutions at or near the peak heating point (as de-
fined by a stagnation heating rate) of a trajectory. Second, the total heat load over the flight
trajectory defines the thickness of the TPS materials. Full CFD is not appropriate. Long
computer run times for individual Navier-Stokes (N-S) solutions prohibit running the many
solutions required to define the heating along a trajectory. Instead, engineering codes such as
MINIVER?® are typically used to provide the complete time histories of surface temperature
used to compute total heat load.

Another approach to defining the surface heating along a trajectory is to use a combined
inviscid-boundary laver method. Inviscid CFD solutions are less costly than N-S solutions:
therefore, more points on a trajectory can be computed using the same computer resources.
Also, engineering boundary laver methods such as the LATCH (Langlev Approximate Three-
dimensional Convective Heating) code? provide reasonably accurate heating rates over much
of the vehicle (e.g., stagnation region, wind side, regions without flow separation) and run
in minutes on desktop workstations. However, care must be exercised at high-altitude,

low Reynolds number conditions where the shock laver can not be divided into separate



inviscid and boundary layver regions due to viscous interactions. At these conditions, an
inviscid-boundary laver approach is inappropriate; and methods that treat the entire shock

10 parabolized Navier-Stokes (PNS),!" or

layer as viscous, such as viscous-shock-laver (VSL),
N-S solvers are necessary.  Inviscid-boundary layer methods are not meant to replace but
complement benchmark CFD solutions in the area of TPS design. Although it may still
be prohibitive to cover a trajectory in detail using this approach, heating rates computed
at selected points on the trajectory can be used to calibrate the temperature time histories
from an engineering method.!?

This paper details the use of an inviscid-boundary layver method to compute the surface
heating rates over the X-34 at several points along a representative trajectory supplied by
OSC. Inviscid. perfect-gas solutions are generated with the Langley Aerothermodynamic
Upwind Relaxation Algorithim (LAURA) and the Data-Parallel Lower-Upper Relaxation
(DPLUR) code. LATCH is used to compute the surface heating rates and radiative equi-
librium temperatures. Comparisons of the surface heating rates and temperatures are made
with viscous, thin-laver N-S solutions from LAURA."? Maximum wind-side, lee-side, and
wing leading edge temperatures are estimated as well. This work is part of a collective effort
at NASA Langley to provide OSC with the aerothermal information necessary to design the
TPS for the X-34 vehicle. Additional data delivered to OSC by Langley include benchmark

CFD solutions." experimental aeroheating,'! and time histories of surface temperature.'2

Geometry
The full N-34 vehicle configuration (version X0001215) is shown in Fig. 1(a), and the
geometry used for the inviscid solutions is shown in Fig. 1(h). Gaps in the elevons and
between different TPS materials are not modeled. Since LATCH requires a single block
topology. the arca aft of the wing trailing edge (including the vertical tail and body fap) is

not included in the inviscid geometry.

Trajectory

The X1004601 “no bounce” trajectory that is analyzed is shown in Figs. 2-5. This “no
bounce™ trajectory is designed to eliminate the possibility of bouncing off of the atmosphere
after reentry and is used as the reference trajectory for maximum wind-side and lee-side
heating. The angle of attack varies from 25 deg to 8 deg during the hypersonic descent
portion of the trajectoryv. At the request of OSC, the following inviscid-boundary laver cases
(2 ascent. 4 descent) are computed and are listed in Table 1. For this paper, the cases
presented in detail are the Al = 6.32, o = 23 deg case (t = 330 sec) and the M = 6, o =

15.22 deg case (t = 340 sec) because N-S solutions exist for these. Nonetheless, all inviscid-



a) Full configuration used for viscous solutions.

b) Partial configuration used for inviscid solutions.

Figure 1: X-34 configurations.
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Table 1: Inviscid-boundary layer solutions.
Time Alt. Mach o Ol Inviscid  N-S soln.  Note
(sec) (kft) No. (deg) (deg) code used available?
145 183 6 9 0 LAURA No Mach 6 ascent
152 196  6.83 11 0 LAURA No Max. heating on ascent
*330 118 6.32 23 0, DPLUR, Yes Max. heating
+10 LAURA Yes
* 340 112 6 15.22 0 DPLUR Yes Wind tunnel comparison
355 110 5.8 8 -10 LAURA No Min. «, max. heating
578 86 3.6 6.46  -10 LAURA No Reentry max. ¢, max. heating
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Figure 6: Inviscid flow-field grid (coarsened).

boundary laver solutions are used to compute the time histories of surface temperature used

for the TPS design as detailed in Ref. 12.

Computational Mesh

The inviscid volume grid is obtained by truncating a viscous volume grid for the X-34
at the wing trailing edge. Because the viscous grid contains many grid points to resolve
gradients, the inviscid grid is thinned and the points are redistributed to reduce unnecessary
clustering.  The resulting inviscid volume grid is 120 x 152 x 32 cells. The corresponding
viscous volume grid contains 64 cells between the body and grid outer boundarv. Grid res-
olution studies in Ref. 15 indicate 32 cells is sufficient for inviscid calculations. Although
DPLUR used this grid size for both of its solutions, LAURA’s multiblock capabilities allowed
a coarser grid in the circumferential direction to be used in the nose region for its compu-
tations. This coarsening of the grid speeds convergence of the solution in the stagnation
region. Details of the grid generation process for the X-34 vehicle are given in Ref. 16. A

sample, coarsened, flow-field grid is shown in Fig. 6.

Flow-field Codes

[nviscid solutions for the cases listed in Table 1 are generated with the CFD codes LAURA
and DPLUR. To provide surface heating information to OSC in a timely fashion, two codes
are used instead of one. Each code is tuned for a different computer architecture; LAURA

for multitasking vector computers and DPLUR for massively parallel machines. Solutions for



the database can be run concurrently on different svstems which saves time. The inviscid flow
fields serve as inputs to the LATCH engineering code which computes surface streamlines
and both laminar and turbulent heating rates. Following are brief descriptions of the three

methods.

LAURA

LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithin) is a finite-volume,
shock-capturing algorithin for the steady-state solution of inviscid or viscous, hypersonic
flows on rectangularly ordered, structured grids. LAURA has been used extensively to
provide acrothermodvnamic characteristics for a number of aerospace vehicles (e.g. AFE.!7
HL-20."¥ Shuttle Orbiter.,'” Mars Pathfinder,?® SSTO Access to Space?!) and is currently
being used in the design and evaluation of the X-33 RLV.%? The upwind-biased inviscid flux
is constructed using Roe’s flux-difference-splitting®® and Harten's entropy fix?! with second-
order corrections based on Yee's sviumetric total-variation-diminishing scheme.?® A point-
implicit strategy is used which treats the variables at the cell center of interest implicitly
at the advanced iteration level and uses the latest available data from neighboring cells.
This results in an efficient, parallel implementation on multitasking vector computers.?
Gas chemistry options include perfect gas, equilibrium air, and air in chemical and thermal
nonequilibrium. The algebraic turbulence models of Cebici-Smith?” and Baldwin-Lomax?®

are also available. More details of the algorithm can be found in Refs. 26, 29, and 30.

DPLUR

The DPLUR (Data-Parallel Lower-Upper Relaxation) method?*' 2 is based on the lower-
upper symmetric Gauss-Seidel method of Yoon and Jameson® but has been modified for
data-parallel computing. The Gauss-Seidel sweeps of the original method of Yoon and Jame-
son are replaced with a series of point Jacobi-like subiterations. This removes all data de-
pendencies and vields a method that is almost perfectly parallel. Like LAURA, it is a finite-
volume, shock-capturing algorithm for the steady-state solution of both inviscid and viscous
flow fields on structured grids. Presently, there are options for perfect gas, equilibrium air,

and 5-species nonequilibrium gas chemistry.

LATCH

The engineering code LATCH (Langley Approximate Three-Dimensional Convective Heat-
ing)” computes surface heating rates on three-dimensional (3-D) vehicles at angle of attack.
The method is based on the axisvmmetric analog for 3-D boundary layers and uses a gen-
cralized body fitted coordinate system. Boundarv-laver edge conditions and the surface

velocities used to determine inviscid streamline direction are obtained from an inviscid flow-
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field solution. In this paper, inviscid solutions are supplied by both LAURA and DPLUR.
Instead of solving the boundary-laver equations along streamlines, an approximate heat-
ing method developed by Zoby* that is valid for both laminar and turbulent heating is
used. This method has been shown to produce accurate results for both wind tunnel and

3136

flight conditions with only a fraction of the computational effort required by the full

boundary-layver equations.

Computational Resources

The primary advantage to using an inviscid-boundary laver method over a N-S code is
the reduction in time needed to generate a solution. For the inviscid cases listed in Table 1,
DPLUR requires 100 node-hours per solution on an IBM SP-2 and LAURA requires about
25 hours per solution on a CRAY YMP. LATCH boundary layer solutions containing surface
temperatures and heating rates are then obtained in about 5 minutes each on an SGI R10000
workstation. Conversely, the viscous LAURA solutions require approximately 300 hours each
on a CRAY C-90 to reach convergence. Although the inviscid-boundary laver approach still
uses a considerable amount of computer time and resources compared to pure engineering

methods. it offers a significant savings over viscous N-S CFD codes.

Results

Surface temperature contours and heating rates are examined for the X-34 at A =
6.32. o =23 deg (f = 330 sec) and M = 6. o =15.22 deg (t = 340 sec). Results from
a combined inviscid-boundary layer method (LAURA-LATCH and DPLUR-LATCH) are
compared with viscous solutions from LAURA to assess the accuracy of the inviscid-boundary
layer approach. Both laminar and turbulent solutions are computed although OSC only
requested turbulent heating data. All solutions assume a perfect gas and compute radiative
cquilibrium wall temperatures based on an emissivity of 0.8. The turbulent, viscous solutions
from LAURA are computed using the Baldwin-Lomax algebraic turbulence model. Details
of the LAURA viscous solutions are found in Ref. 13.

Wind-side temperature contours are shown in Figs. 7-10 for the two flight conditions.
Contour levels are plotted in 100 deg F increments over a range of temperatures from 300-
2000 deg F. The upper half of each figure depicts the inviscid-boundary layer results (either
LAURA-LATCH or DPLUR-LATCH), and the lower half shows the surface temperatures
from a LAURA viscous solution. To help correlate the predicted surface temperatures with
TPS materials, Table 2 lists the multi-use capability of the TPS blankets used over much of
the vehicle. In Fig. 7, the laminar temperatures from DPLUR-LATCH agree quite well (i.c.

within 100 deg F) with the temperatures from LAURA over much of the lower surface. Both
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Figure 7: Laminar wind-side temperatures at { = 330 sec.
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Figure 8: Turbulent wind-side temperatures at { = 330 sec.

Table 2: Multi-use temperature limits of TPS blankets.

Material Max. Temperature (deg F)
High Temp. AFRSI 2000
AFRSI 1500
FRSI 700




Turbulent Windside

Twu deg F /
1 /900"
g 1500 \1700
HAURALATCH j/ \/
i el e '_:_’—-«/" 1400 e ’_—/J—L’r—
—==~1500 = 7
1800, =
2 -«s“"““«.\ 400 - —
LAURA (Viscous) \\
1500, _ 1700
M =6.32 \ \A

1900 l
a =23 deg N )
8, = +10 deg N\

Figure 9: Turbulent wind-side temperatures at t = 330 sec (with elevons deflected).
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Figure 10: Turbulent wind-side temperatures at { = 340 sec.
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Laminar Leeside
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Figure 11: Laminar lee-side temperatures at t = 330 sec.

solutions predict temperatures of 800 deg F near the centerline, 1100 deg F near the outer
edge of the strake, and 900 1000 deg F near the middle of the wing. This region of higher
temperatures extending across the wing from the leading to the trailing edge is caused by
the wing-bow shock interaction and is predicted by both methods. However, the magnitude
of the temperatures appears to be slightly lower for DPLUR-LATCH. Similar comparisons
are scen for the turbulent results shown in Figs. 8 10, albeit the overall temperature levels
are 300 600 deg F higher than the laminar temperatures. The higher temperatures force the
use of the High-Temperature AFRSI blankets over much of the windward surface. Figure 9
shows the temperature contours for the X-34 with +10 deg deflected elevons. Both LAURA-
LATCH and LAURA show a pocket of higher temperatures (=~ 1700 deg F) on the elevon
surface. In addition, Figs. 8 and 9 offer a comparison between DPLUR-LATCH and LAURA-
LATCH solutions at the same conditions (except for the elevon deflection). The temperature
contours for the two solutions are similar over much of the lower surface except near the
forward portion of the vehicle where DPLUR-LATCH predicts a lower temperature away
from the centerline. As previously stated, a coarser grid was used for the inviscid LAURA
solution in the circumferential dircction in this region which may account for some of the
differences. Figure 10 shows the wind-side temperature contours for ¢ = 340 sec. As expected,
the lower angle of attack (a = 15.22 deg) results in generally lower temperatures on the wind
side of the vehicle. For example, the radiative equilibrium temperatures over most of the
wing are around 200 deg F lower than for the ¢ = 330 sec case.

Leeside temperature contours are shown in Figs. 11 13. Temperature contours for
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Figure 12: Turbulent lee-side temperatures at ¢t = 330 sec.
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Figure 13: Turbulent lee-side temperatures at ¢+ = 340 sec.
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Laminar Side
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Figure 14: Laminar side temperatures at ¢ = 330 sec.

the turbulent, deflected elevon case at t = 330 sec are not presented since the lee-side
temperatures on the clevon are verv low (< 300 deg F). Somewhat unexpectedly for an
inviscid-boundary layver method, the lee-side temperature contours from DPLUR-LATCH
agree quite well with the viscous LAURA solution at these conditions. The same general
patterns in temperature are seen near the forward portion of the vehicle as well as on the
wing. These lee-side predictions impact the TPS design because the temperature levels vary
around the limit of the FRSI blankets (700 deg F).

Temperature contours on the side of the vehicle are shown in Figs. 14 16, Again the
contour patterns from DPLUR-LATCH and the viscous LAURA solutions are very similar.
Therefore, as seen in Figs. 7- 16, the inviscid-boundary laver technique predicts radiative
equilibrium wall temperatures that compare favorably with temperatures from a N-S solver.

To illustrate the differences between the inviscid-boundary laver and N-S solutions more
clearly, surface heating rates are examined along several cut planes including centerline,
wing leading edge, and cross-sectional cuts. Surface heating rates are more sensitive than
radiative equilibrium wall temperatures (g, ~ T27) and should provide more insight into the
comparison between the methods. The locations of cut planes are shown in Fig. 17.

Lateral surface heating distributions are given in Figs. 18-20 at four axial statious.
The laminar heating rates in Fig. 18 are examined first, because there is no influence of
different turbulence models. The laminar cuts in Fig. 18 show, in general, an overall good
agreement between the DPLUR-LATCH, LAURA-LATCH. and the viscous LAURA solu-

tions. However. the LATCH results tend to underestimate the maximum heating rates from
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Figure 16: Turbulent side temperatures at + = 340 sec.

14



L e/

Z

z=100in

C.L.
Xx=50in x=150in x =300 in x =450 in

Figure 17: Cut plane locations.

LAURA by approximately 15 20 percent at ecach axial station. Because LATCH computes
heating rates along inviscid surface streamlines, it has difficulties in regions of high curvature
such as near the wing leading edge. The surface streamlines cannot account for the large
three-dimensional effects that are present. In particular, laminar heating rates from LATCH
in high-curvature regions tend to be lower than those predicted by N-S solvers.” This may
help explain the heating rate comparisons in Figs. 18(¢) and 18(d) and to a lesser degree in
Figs. 18(a) and 18(h) where the streamlines wrap from the lower surface around to the side
of the vehicle.

Differences in the heating pattern near the windward centerline are noted in Figs. 18(a)
and 18(b) between LATCH and LAURA. The heating decreases as the centerline is ap-
proached. A possible explanation is suggested by the DPLUR-LATCH and LAURA-LATCH
results in Fig. 18(b). LAURA-LATCH, which uses a coarser circumferential grid in this re-
gion, does not predict the dip in heating as well as DPLUR-LATCH, which uses the full grid.
The streamline directions on the flat lower surface of the vehicle are sensitive to the grid
resolution. Also seen in Figs. 18(h) and 18(¢) is the increased heating predicted by LAURA
near the leeward centerline. Crossflow separation is present around o = 150 in on the lee
side of the vehicle,'® and this is reflected in the higher heating rates. Being au engineering
code, LATCH cannot account for this.

The turbulent heating rates in Figs. 19 and 20 are examined next. In general, good
agreement between LATCH and LAURA is seen in the cross-sectional cuts, especially on

the wing at x = 300 in and » = 450 in. However. unlike the laminar results, the turbulent
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Figure 18: Lateral laminar heating distributions at ¢ = 330 sec.
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q, (BTU/f.s)

q., (BTU/fP-s)

- ———— LAURA (Viscous)
~~  ame DPLUR - LATCH
\\ — — — — Surface
AN
5
6 ‘\
x = 50 in
A\ M=25
| o = 15.22 deg
/ Turbulent
| s
//
e Graiard afes S WETEN TS IPETUNEE INSNErES INRr ETRNEr |
0 5 10 15 20 25 30 35 40
z (in)
a) x = 50 in.
- — LAURA (Viscous)
F—~~—~_ e DPLUR - LATCH
1 >~ — — —— Surface
~
- N
s N
i AN
L \
. \
i x = 300 in
M=6
o = 15.22 deg
Turbulent
__,_:;\—r——-‘r;ifl——%"‘ﬂ;”;/l N B |
o] 10 20 30 40 50 60 70
z (in)

¢) x = 300 in.

LAURA (Viscous)
F e DPLUR - LATCH
- — — — — Surface

x = 150 in

q, (BTU/t"-s)

1 A 1 i 1 " J
40
z (in)

b) x = 150 in.

—— LAURA (Viscous)
DPLUR - LATCH
— — — — Surface

15{

q, (BTU/f-s)
o

w»

d) x = 450 in.

Figure 20: Lateral turbulent heating distributions at + = 340 sec.

18



peak heating rates from LATCH tend to be higher than those from LAURA. This fact can
be attributed to the inherent differences between the engineering turbulent houndary-layver
equations in LATCH and the algebraic model emploved by LAURA. For the turbulent cases.
the heating patterns near the windward centerline in Figs. 19(b) and 20(b) differ between
LATCH and LAURA. Vortices on the wind side of the vehicle in the boundary laver have
heen observed in the flow fields predicted by LAURA that might explain these differences.'
However, to keep the comparisons in perspective, differences of 15 20 percent in heating
rates with corresponding differences of 4 5 percent in temperature are adequate for design
work.

Windward centerline distributions for the two cases (t = 330 sec and t = 340 sec) are
presented in Fig. 21. The turbulent heating rates from LATCH (with both LAURA and
DPLUR) are approximately 15 percent lower than the heating rates from LAURA for most of
the vehicle (& > 100 in) for both cases. The laminar heating rates in Fig. 21(a) from LATCH
are 25 percent higher than the LAURA results for the forward half of the vehicle (@ < 300
in). The agreement is much better downstream. The heating rates from DPLUR-LATCH
are closer to the LAURA heating rates due to the denser circumferential grid resolution used
by DPLUR.

Wing leading edge heating distributions are presented in Figs. 22 24, The leading edge
is defined as the outermost point of the wing (2 = z,,4,. see Fig. 17) and does not necessarily
represent the highest heating rates or temperatures on the wing. In Figure 22, the laminar
heating rates from LAURA are approximately 15 percent higher than the inviscid-boundary
layer (DPLUR-LATCH and LAURA-LATCH) solutions along the wing leading edge. This
corresponds to peak temperatures (not shown) along the leading edge of 1800 deg F for
LAURA and 1725 deg F for LATCH. As shown previously, it is the inviscid-boundary layver
solutions that predict the higher turbulent heating rates as shown in Figs. 23 and 24. Tur-
bulent peak temperatures are 2035 deg F (t = 330 sec) and 1965 deg F (# = 340 sec) from
LAURA and 2110 deg F (¢ = 330 sec) and 2020 deg F (t = 340 sec) from LATCH. SIRCA tiles
are used for the wing leading edge, because these temperatures exceed the High-Temperature
AFRSI limit of 2000 deg F. Overall, the inviscid-boundary layer method predicts reasonably
good (within 15 percent) surface heating rates and radiative equilibrinm surface temperatures
along the wing leading edge, especially considering the strong bow-wing shock interaction.

Wing heating distributions at z = 100 in. are presented in Figs. 25 27. Figures 25 and 26
show the effect of elevon deflection on the heating rates. The inviscid-boundary layver results
agree well with the viscous LAURA solutions over much of the wing including the elevon.
Heating rates from LATCH are approximately 20 percent lower than LAURA for the laminar

case presented in Fig. 25 but are within 10 percent for the turbulent cases. Although not
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23



shown, the deflected elevon results in increases of about 190 deg F for laminar flow and
240 deg F for turbulent flow over the surface temperatures of the undeflected elevon. Both

LATCH and LAURA predict similar jumps in temperature.

Concluding Remarks
A combined inviscid-boundary layer method (LAURA-LATCH, DPLUR-LATCH) has

been used to predict the surface heating rates and radiative equilibrium wall temperatures
for the NX-34 velicle along a reference trajectory. This information has been delivered to OSC
as part of a collective effort by NASA Langley to aid the TPS design. Wall temperature pat-
terns from the engineering boundary laver code LATCH are similar to the wall temperatures
from the N-S solver LAURA over much of the vehicle at two flight conditions. Increased tem-
peratures along the wing due to the wing-bow shock interaction and on the deflected elevon
are correctly predicted by the inviscid-boundary laver technique. LATCH predicts surface
heating rates that are generally within 20 percent of values from a viscous LAURA solution.
The observed agreement between LATCH and LAURA is somewhat better for turbulent
flows. The turbulent radiative equilibrium surface temperatures are 300-600 deg F higher
than the corresponding laminar temperatures at the same conditions. The inviscid-boundary
laver method (DPLUR-LATCH and LAURA-LATCH) also uses much less computer time
than the N-S solver LAURA. Consequently, many more solutions can be computed along a
vehicle's trajectory with the same computational resources. This ability to generate a rea-
sonably accurate aerothermal database for a vehicle makes inviscid-boundary laver methods

excellent design tools.
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